Fork me on GitHub

NOI2004郁闷的出纳员

NOI2004郁闷的出纳员

传送门

题目看起来玄乎,但其实只需要一点点小 $trick$ 就可以了.

我们可以用一个全局的 $delta$ 来维护工资的调整记录

对于每一个新加入的员工,先判断是否低于最低工资下限,如果是,直接踢出,不做任何操作,否则,将其插入 $Treap$ 中,不过这时为了不对以后的查询产生影响,我们要插入的值时 $key-delta$ (想一想,为什么?)

对于加工资的操作,直接在 $delta$ 上统计即可.而减工资,这可能牵扯到会有员工离开,所以我们不能只修改$delta$

我们在修改 $delta$ 之后,把 $Treap$ 按权值分割,分割标准是 $minn-delta-1$ (想一想,为什么?提示:不等式移项)

然后直接舍弃整个的左子树,此时的左子树就是所有会离开公司的员工代表的节点,所以最后的答案要加上该子树的 $size$

对于查询操作,直接查询出来的第 $k$ 小(注意!!!是第 $k$ 小)加上 $delta$ 即可

$Code$:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <ctime>
#define Drt pair < Treap * , Treap * >
#define siz(rt) ( rt == NULL ? 0 : rt->size )
#define int long long

using std :: pair ;

int n , minn , cnt , delta ;

struct Treap {
Treap * son[2] ;
int val , size , rank ;
Treap (int val) : val ( val ) { size = 1 ; son[0] = son[1] = NULL ; rank = rand () ; }
inline void maintain () {
this->size = 1 ;
if ( this->son[0] != NULL ) this->size += this->son[0]->size ;
if ( this->son[1] != NULL ) this->size += this->son[1]->size ;
return ;
}
} * root = NULL ;

inline Drt Split ( Treap * rt , int k ) {
if ( rt == NULL ) return Drt ( NULL , NULL ) ;
Drt t ;
if ( k <= siz ( rt->son[0] ) ) {
t = Split ( rt->son[0] , k ) ; rt->son[0] = t.second ;
rt->maintain () ; t.second = rt ;
} else {
t = Split ( rt->son[1] , k - siz ( rt->son[0] ) - 1 ) ;
rt->son[1] = t.first ; rt->maintain () ; t.first = rt ;
}
return t ;
}

inline Drt SplitV ( Treap * rt , int key ) {
if ( rt == NULL ) return Drt ( NULL , NULL ) ;
Drt t ;
if ( rt->val <= key ) {
t = SplitV ( rt->son[1] , key ) ; rt->son[1] = t.first ;
rt->maintain () ; t.first = rt ;
} else {
t = SplitV ( rt->son[0] , key ) ; rt->son[0] = t.second ;
rt->maintain () ; t.second = rt ;
}
return t ;
}

inline Treap * merge ( Treap * x , Treap * y ) {
if ( x == NULL ) return y ; if ( y == NULL ) return x ;
if ( x->rank < y->rank ) {
x->son[1] = merge ( x->son[1] , y ) ;
x->maintain () ; return x ;
} else {
y->son[0] = merge ( x , y->son[0] ) ;
y->maintain () ; return y ;
}
}

inline int Getrank ( Treap * rt , int key ) {
if ( rt == NULL ) return 0 ;
if ( key <= rt->val ) return Getrank ( rt->son[0] , key ) ;
else return Getrank ( rt->son[1] , key ) + siz ( rt->son[0] ) + 1 ;
}

inline int Getkth ( Treap * & rt , int key ) {
Drt x = Split ( rt , key - 1 ) ;
Drt y = Split ( x.second , 1 ) ;
Treap * node = y.first ;
rt = merge ( x.first , merge ( node , y.second ) ) ;
return node == NULL ? 0 : node->val ;
}

inline void insert ( Treap * & rt , int key ) {
int k = Getrank ( rt , key ) ; Drt t = Split ( rt , k ) ;
Treap * node = new Treap ( key ) ;
rt = merge ( t.first , merge ( node , t.second ) ) ;
return ;
}

signed main () {
scanf ("%lld%lld" , & n , & minn ) ;
while ( n -- ) {
char opt[4] ; int key ;
scanf ("%s%lld" , opt , & key ) ;
if ( opt[0] == 'I') {
if ( key < minn ) continue ;
insert ( root , key - delta ) ;
}
if ( opt[0] == 'A') delta += key ;
if ( opt[0] == 'S') {
delta -= key ;
Drt t = SplitV ( root , minn - delta - 1 ) ;
root = t.second ; cnt += siz ( t.first ) ;
}
if ( opt[0] == 'F') {
if ( key > siz ( root ) ) printf ("-1\n") ;
else printf ("%lld\n" , Getkth ( root , siz ( root ) - key + 1 ) + delta ) ;
}
}
printf ("%lld\n" , cnt ) ; system ("pause") ; return 0 ;
}